
Chapter

1
Dirac Programming Language

Luis Felipe Gomes da Silva

Abstract

This document is about ’Dirac’ programming language.

Resumo

Este documento é sobre a linguagem de programação Dirac.

1.1. General Information
1.1.1. Motivation

Dirac is a programming language that contains all the math required in Quantum Physics.
Using Paul Dirac’s bra-ket notation, it is possible to simulate some Quantum Calculations
and by the use of random variables and vectors through pseudo random processes, to
simulate very roughly, the uncertainty required in a physical system.

Furthermore, I’m working on a kind theory of a computational space, that is noth-
ing more than a two dimension vector field that’ll be able, as I hope, to eliminate time
from computing, getting rid of those complex classes hierarchies.

1. Dirac is a stack based compiled language.

2. It is very rigorous and does not allow recursion.

3. It is an open source language released under GPL license.

4. It is fitted to science purposes only.

5. Any military use is condemned by the author.



Table 1.1. Table of Types

Symbols Indexes Numbers Objects

program,
end, ket,
bra, is
variable,
constant,
interval,
integer,
natural, ra-
tional, irra-
tional,real,
complex,
’!’, ’.’ , ’,’

variable, con-
stant

interval,
integer,
natural,ra-
tional,ir-
rational,
complex,
real

string, vector, matrix

a Com-

ments are given by the token ’!’

1.1.2. Objectives

1. To represent the mathematics of quantum physics using Dirac’s bra-ket notation as
atoms.

2. To compile code to MIPS architecture.

Due to the crescent monopoly on compilers made by the industry, I decided to
create a language and a compiler to fit my needs.

1.2. First Stage
So far I have established the tokens I judge to be necessary for the first part. The pre-
processor remains halted, because it is very difficult to know beforehand what we need
as macros to prepare the code. Instead I prepared a simple scanner. The first part is
concerned with these:

1. scan the stream for tokens.

2. attach the lexemas (types) to the tokens and save them in a table.

I turned the language more rigorous and more close to human understanding. Al-
though it has the cost of productivity (which is not my aim), the language seems to become
more readable and intuitive for mathematicians and physicists. Besides, languages which
are interpreted and productive are messy and poorly documented, which annoys anyone
who wants to grasp the mere elements of those languages. Here is a sample code for the
first stage of development.

program, teste.



variable, a is bra.
variable, x is matrix.
transpose(a).
c := mult(a,x).
print(c).
end, program.

1.3. Second Stage
1.3.1. The Dirac’s Grammar

Dirac Grammar’s Structure


